1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
| #include <bits/stdc++.h>
using namespace std;
#define ll long long #define N 1000010 const ll p = 1e9 + 7; ll n, m, k, inv2, invk; ll f[N], g[N], fac[N], inv[N];
ll qmod(ll base, ll n) { base %= p; ll res = 1; while (n) { if (n & 1) { res = res * base % p; } base = base * base % p; n >>= 1; } return res; }
void add(ll &x, ll y) { x += y; if (x >= p) x -= p; }
#define rep(i, a, n) for (int i=a;i<n;i++) #define pb push_back #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef pair<int, int> PII; const ll mod = 1000000007;
int _; namespace linear_seq { ll res[N], base[N], _c[N], _md[N];
vector<int> Md; void mul(ll *a, ll *b, int k) { rep(i, 0, k + k) _c[i] = 0; rep(i, 0, k) if (a[i]) rep(j, 0, k) _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod; for (int i = k + k - 1; i >= k; i--) if (_c[i]) rep(j, 0, SZ(Md)) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod; rep(i, 0, k) a[i] = _c[i]; } int solve(ll n, VI a, VI b) { ll ans = 0, pnt = 0; int k = SZ(a); assert(SZ(a) == SZ(b)); rep(i, 0, k) _md[k - 1 - i] = -a[i]; _md[k] = 1; Md.clear(); rep(i, 0, k) if (_md[i] != 0) Md.push_back(i); rep(i, 0, k) res[i] = base[i] = 0; res[0] = 1; while ((1ll << pnt) <= n) pnt++; for (int p = pnt; p >= 0; p--) { mul(res, res, k); if ((n >> p) & 1) { for (int i = k - 1; i >= 0; i--) res[i + 1] = res[i]; res[0] = 0; rep(j, 0, SZ(Md)) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod; } } rep(i, 0, k) ans = (ans + res[i] * b[i]) % mod; if (ans < 0) ans += mod; return ans; } VI BM(VI s) { VI C(1, 1), B(1, 1); int L = 0, m = 1, b = 1; rep(n, 0, SZ(s)) { ll d = 0; rep(i, 0, L + 1) d = (d + (ll) C[i] * s[n - i]) % mod; if (d == 0) ++m; else if (2 * L <= n) { VI T = C; ll c = mod - d * qmod(b, mod - 2) % mod; while (SZ(C) < SZ(B) + m) C.pb(0); rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod; L = n + 1 - L; B = T; b = d; m = 1; } else { ll c = mod - d * qmod(b, mod - 2) % mod; while (SZ(C) < SZ(B) + m) C.pb(0); rep(i, 0, SZ(B)) C[i + m] = (C[i + m] + c * B[i]) % mod; ++m; } } return C; } int gao(VI a, ll n) { VI c = BM(a); c.erase(c.begin()); rep(i, 0, SZ(c)) c[i] = (mod - c[i]) % mod; return solve(n, c, VI(a.begin(), a.begin() + SZ(c))); } };
int main() { int T; scanf("%d", &T); while (T--) { scanf("%lld%lld", &k, &n); invk = qmod(k, p - 2); if (n == -1) { printf("%lld\n", 2ll * qmod(k + 1, p - 2) % p); continue; } for (int i = 1; i <= m; ++i) f[i] = 0; f[0] = 1; g[0] = 1; for (int i = 1; i <= 2 * k; ++i) { if (i > k) { add(f[i], invk * (g[i - 1] - g[i - k - 1] + p) % p); } else { add(f[i], invk * g[i - 1] % p); } g[i] = (g[i - 1] + f[i]) % p; } vector<int> vec; for (int i = 0; i <= 2 * k; ++i) vec.push_back(f[i]); printf("%d\n", linear_seq::gao(vec, n)); } return 0; }
|